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A note on the least-squares method: the refinement of the structure of KAsF,. By JamEes A.
IBERS, Shell Development Company, Emeryville, California, U.S.A.

(Received 5 July 1956 and in revised form 4 September 1956)

The usual normal equations of the least-squares method
are linear in the changes in the variables since they are
derived from equations of condition which are in linear
form. The reduction of these equations of condition to
linear form involves an approximation, namely the ter-
mination of the Taylor-series expansion of the known
functions in terms of changes in the variables at the first
derivative terms (Whittaker & Robinson, 1944). Par-
ticularly in the later stages of the refinement of atomic
coordinates, this approximation does not lead to serious
errors. It will be shown below, however, that the usual
normal equations cannot be used in the first refinement
of the structure found by Roof (1955) for KAsFy. On
the other hand, modified normal equations, derived from
the Taylor-series expansion, in which a second derivative
term in one of the variables is retained, prove to be
effective.

A summary of the crystal structure of KAsFg, as
determined recently by Roof (1955), is:

KAsF,: C3—R3 (from Weissenberg photography);

a = 7-352, ¢ = 7-235 A (hexagonal); Z = 3.

Asin (a), K in (b), F in (f) with z = 0-117, y = 0-234,
2z = 0:152, as determined from Fourier projections
based on powder data out to 6g, = 40°.

It is reasonable to assume, both from structural con-
siderations and from the general agreement between
observed and calculated intensities as given by Roof,
that the heavy-atom positions he describes for KAsF,
are correct. However, a serious objection to Roof’s work
is the fact that his Fourier ‘refinement’, which was based
on powder data, had to lead to the condition y = 2z, as
required by the space group Dj;—R3m, since with powder
data it is impossible to distinguish R3 from R3m. Thus,
Roof did not refine the structure in the space group he
proposed. Moreover, Roof found an R factor of 0-19 (see
below) for a structure in which the heavy atoms are fixed
by symmetry. In view of these facts it is unreasonable
to assume that the fluorine positions given by Roof are
reliable. As far as is known, KAsF, is the first solid to
be studied by X-rays in which there is an As-F bond
distance. It is of interest, then, to establish this distance
accurately, if possible, by a proper refinement of the
fluorine positions. For this purpose the least-squares
method offers many advantages over other methods of
refinement, such as Fourier techniques. An important

advantage in this particular case is the fact that a least-
squares procedure can be applied separately either to the
structure in R3m or in R3, whereas with powder data
Fourier techniques are applicable only to structures in
R3m. Moreover, all the data can be utilized in the least-
squares method, whereas the high degree of overlap of
the data is a severe handicap to the use of Fourier tech-
niques. In KAsF, forty-six reflections contribute to the
twenty lines observed on the powder photograph; only
eight of these lines result from single reflections.

In order to carry out the least-squares refinement we
define the function G; as Gj = (X p;F%)"%, where the

?

sum is over each reflection ¢ having calculated structure
factor Fy; and multiplicity pi; which contributes to the
observed intensity I;. Our object is to minimize the
quantity 3 w;(I}*—G;)?, where I; is the reduced intensity,

j
that is the observed intensity I; corrected for such effects
as the Lorentz factor, the polarization factor, and ab-
sorption. The quantity we wish to minimize is analogous
to 3 w(hkl)(|F,|—|F|)? whose minimization for the re-

hkl

finement of atomic coordinates was first suggested by
Hughes (1941).

It is not difficult to prove that for R3, as long as
y = 2z, the 8G/oz, which arises from the linearization
of the equations of condition is identically zero for all
powder lines. The resulting normal equations will con-
tain no dx terms. If 2z is only approximately equal to v,
a large spurious shift in 2 may result because the terms
0G;/ox are relatively small. (That is, 3 (0G;/ox)? may

j
not be much larger than 3 (8G;/éz)(I}®—Gj;).) Thus, to

i
start with a small, arbitrary shift in z is not a generally
useful way of attacking the problem. Rather, a successful
least-squares refinement may be effected by using normal
equations which are based on equations of condition
whose Taylor-series expansions retain the terms
£(2%G/ox?) (4x)%. Since 8G/dx = 0, the resulting normal
equations are quite similar to the usual ones. In fact,
replacement of (4z)? for (dz) and of }(6°G/ox?) for (8G/dx)
are the only changes. It is immediately evident that these
modified normal equations will not lead to a unique deter-
mination of z, since if (4z)? = C, then 4z = 4 C'2. This
is just what one expects, however, for there exist two
equivalent sets of parameters, namely z,, ¥,z and

Table 1. Least-squares refinement of KAsF,

First refinement R3

Parameter  Initial

z 117 134 100
y 234 229

z 152 148

B, 05 0-2

Bp 27 2-1

$3 Iy 1320 888 944

i -
R 0-09 0-06 0-06

Final refinement R3 Final refinement R3m

1384-007 0894007 1134006
227£005 2271005 -
1474005 1474005 147 4- 006
0-2 0-2 0-1

2:1 2-1 2-0

774 774 806
0-050 0-050 0051
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%, 9, 2, Where z,+x, =y, which are related by a 30°
rotation of the @ axes in the a—a plane. Because both
sets lead to identical interatomic distances and identical
powder intensities, we need only consider one set. Ac-
tually, both sets were refined, for the condition x;+x,=y
in the final parameters serves as a convenient check on
the accuracy of the calculations.

Structure factors were computed from Roof’s para-
meters using form factors for K+, F~, and As (Berghuis
et al., 1955) and initial temperature factors B,=Bg=Bys
and By for amplitude obtained essentially by a guess.
The three fluorine parameters, the scale factor, and the

Table 2. Observed and calculated structure factors

AF* 3G,
Line No. hikl R3 R3m R3  R3m %It
1 101 26 26 63 65 66
2 10 42 4“4 103 107 99
3 012 40 42 97 103 102
1 021 24 25 58 61 62
003 —21  —21

5 {202 2 22} 63 62 62
211 1

6 {531 o ——8} 36 28 46

7 300 22 21 55 52 55
113 14
123 11 12

8 2 5 . 183 184 181
132 43

9 220 35 36 85 88 83

10 104 23 23 56 56 59
131 18

11 {141 18 19} 63 67 718
303 14 15
303 29 30

12 312 25 29 133 133 123
342 21
024 30 30

— 4014 2 ~1 5 2 —
223 13
343 9 1

13 042 38 41 174 179 169
214 38
334 45 42
321 20

14 {551 20 16} 58 57 59

— 015t 8 8 9 19—
410 38

15 {140 50 30 110 103 106
232 29

16 {552 29 32 94 109 108

17 205 20 20 48 49 46
134 27 06

18 {144 24 89 90 88
051 3 1
125 1 .

19 135 8 96 104 95
330 38 42
006 36 37
413 4 o

20 53 14
VS o 108 111 114
153 1
52 33 35

* For R3 the values of F, above are for x =_O-138. If
2 = 0-089 then F(kEl) is interchanged with F(h, h+k,1).
For R3m F(kkl) = F(h,h+k,1) and the common value is

given above without repitition. Values above are in electrons.
+ Omitted from the calculation of the R factor.
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two isotropic temperature factors constituted the vari-
ables whose most plausible values we wished to find
from the twenty observational equations by use of the
modified normal equations discussed above. All observa-
tional equations were given unit weight. All cross terms
were retained in the normal equations. Table 1 indicates
the results of the refinements for both shifts in z. It was
found that the second and succeeding refinements could
be carried out by use of the usual normal equations. This
was possible because the x and y parameters had shifted
far enough away from the condition y = 2x to make
0G/dx comparable in size with the other first-derivative
terms. The refinements were continued until changes in
the parameters were less than 0-001. Four refinements
in all were required for each set of parameters. The
estimates of errors in the parameters given in Table 1
are those which result from the least-squares method;
since absorption corrections (ugy = 192) presumably
have been neglected by Roof in his reduction of the
intensities, these estimates may be optimistic. For the
sake of comparison, the structure was also refined for the
space group E3m by use of the usual normal equations.
The results of this refinement are also given in Table 1.
Since the structure in R3m with only a moderately
asymmetric temperature factor on the fluorine atoms
would be expected to be compatible with the structure
in R3, it is not surprising that the two structures in
Table 1 appear to be equally reliable.

Table 2 lists some pertinent data including the line
numbers of Roof and the final values of G for both R3
and R3m. The values of I*? were derived from the re-
duced intensities given by Roof. The reduction of the
R factor [2 (13— G,)]/z,‘l”2 from 0-19 to 0-050 may

seem surprlsmtr in view of the shifts in the parameters
and in view of the fact that the heavy atoms are fixed
by symmetry. Actually, an R factor of about 0-11 is
obtained here from Roof’s structure. Roof obtains 0-19
because of a few indexing errors (line Nos. 13, 16, 20),
and because he apparently defines R as [ 2 (I;—G3H1/ 2 I;.

Table 3 summarizes the principal bond distances and

Table 3. Bond distances and angles

R3 R3m Roof
As-F (4) 1-80+0-05 1-794+0-05 1-85
252 2-49 2-58
F-F (A) +0-07 +0-07
2-58 2-57 2:66
2-81 2-81 2-75
K-F (A) +0-05 +0:05
2-96 2-93 2-93
887 88-3 88-3
F-As-F (9 422 4.9:.1
91-3 91.7 91-7

angles which may be derived from the parameters found
here and from Roof’s parameters. KAsFy belongs strue-
turally to a general class of substances typified by TISbFg
(Schrewelius, 1942) all of which crystallize in the space
group R3m. In view of this it is gratifying that the As-F
distance found for the structure in R3 agrees so well
with that found for the structure in R3m. The As-F
distance may be given as 1-80+0-05 A regardless of which
space group is the correct one.
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The isomorphous-replacement method applied to molecules containing like atoms. By D. June
SuTor, Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 22 June 1956 and in revised form 17 July 1956)

The introduction of a ‘heavy atom’ into a compound
often provides a convenient method of analysing its
crystal structure. The coordinates of the heavy atom can
generally be obtained from the Patterson function, and
then it may be a relatively simple matter to locate the
rest of the molecule. The method suffers from the dis-
advantage that the presence of the heavy atom results in
less accurate values for the atomic coordinates than are
usually obtained for a compound containing only like
atoms. This disadvantage can be overcome by using,
instead of the conventional heavy atom, one containing
a similar number of electrons to the atoms comprising
the rest of the molecule. Except for certain cases, such
as those in which the compound can be obtained with
varying amounts of water of crystallization, this extra
atom will be part of the molecule. For example, in organic
crystal structure analysis this method can be applied to
two similar molecules one of which contains an extra
substituent atom.

The two compounds chosen must show a close corre-
spondence in unit-cell dimensions so that the atomic
positions are not very different. A comparison of the two
Patterson functions will then show whether the molecules
not only have the same orientation but also occupy closely
similar positions in their unit cells. I have applied the
method with success to caffeine and theophylline, whose
crystal structures I had hot succeeded in solving by other
means. In this case, the extra atom is the carbon of the
methyl group, substituted in the five-membered ring of
caffeine (see Fig.1). The two hkO Patterson functions

c’m cH,
O\T/N\ i/N\CH \T/“l‘\ N
oy N\Icl/c\r\ CH{\c'/l\Néw
@ é’+1H,o s ) L +1H,0

Fig. 1. (a) Caffeine. (b) Theophylline.

. showed that the orientation and position of the molecules
are similar, but indicated that the plane of the theo-
phylline molecule is more steeply inclined to the short
(c) axis. This is to be expected from the unit-cell dimen-
sions as the ¢ axis shows an increase of 129, in theo-

ACo

phylline whereas the a and b axes are 119, and 89, shorter
respectively.

The difference Patterson introduced by Buerger (1942),
and preferably sharpened, is used to locate the positions
of the molecules in the unit cell, as this function will
contain images of the molecules as seen from the extra
atoms. In the calculation of the difference Patterson,
terms which are sensitive to the non-exact correspondence
of like atoms in the two compounds are not included.
These terms are of two types, first a few reflexions oc-
curring at low angles where the difference in F values
for the two compounds is greater than can be due to the
extra atom, and secondly, all reflexions occurring at high
angles where the correspondence between the observed
structure amplitudes is no longer good. Omission of these
latter terms causes no errors due to series termination
since it is a difference series which is used.

The difference Patterson (hk0 projection) of caffeine
and theophylline, sharpened and with the origin peak
removed, is shown in Fig. 2(a). The space group is P2,/a,
which has four general positions, and therefore this func-
tion represents sixteen images of the molecule as seen
from the four extra atoms with each of the four molecules
in turn. These sixteen images constitute four sets of four
molecules related by the space-group elements, and the
choice of one such set fixes the molecule with respect to
one of the origins in this projection. The location of a set
proved to be comparatively easy: the obvious starting
point was the molecule situated with the extra atom on
the origin of the difference Patterson. Positive regions
could be obtained for the majority of atoms and the
orientation of the six-membered ring agreed with that
obtained from the ordinary sharpened Patterson func-
tions of both caffeine and theophylline. By a process of
trial and error lasting less than half a day, three other
molecular positions were found satisfying the space-
group symmetry and placing as many atoms as possible
on positive regions. These four positions are shown in
Fig. 2(a). Of the remaining maxima, those marked with
crosses are the only ones compatible with the positions
for the water molecules forming hydrogen bonds. More
accurate coordinates for this water molecule were ob-
tained from the first Fourier refinement and it is these
coordinates which are marked in Fig. 2(a). Spurious
maxima occur, due to the non-exact correspondence of
like atoms in the two compounds, but there are very few
peaks which have not been used. At present both struc-
tures have R factors below 209 and refinement is pro-
ceeding.
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